21 research outputs found

    Secondary Osteoporosis in Patients with Juvenile Idiopathic Arthritis

    Get PDF
    Bone disease in patients with juvenile idiopathic arthritis (JIA) is associated with focal (joint erosion and juxtaarticular osteopenia) and systemic bone loss (generalized osteopenia or reduction of bone mass density). Pathophysiology of bone loss is multifactorial and involves particularly proinflammatory cytokines and deleterious effects of glucocorticoid therapy. Clinical studies in patients with JIA indicate excessive activation of osteoclastogenesis and reduction of bone formation. Reduction of physical activity, muscle atrophy caused by high disease activity, and compulsory restriction in movements are also associated with bone loss. In patients with JIA, the disease can be complicated by growth cartilage involvement and systemic or local growth retardation. In the absence of preventive measures, fragility fractures can occur even at an early age

    Growth And The Growth Hormone-Insulin Like Growth Factor 1 Axis In Children With Chronic Inflammation:Current Evidence, Gaps In Knowledge And Future Directions

    Get PDF
    Growth failure is frequently encountered in children with chronic inflammatory conditions like juvenile idiopathic arthritis, inflammatory bowel disease and cystic fibrosis. Delayed puberty and attenuated pubertal growth spurt is often seen during adolescence. The underlying inflammatory state mediated by pro-inflammatory cytokines, prolonged use of glucocorticoid and suboptimal nutrition contribute to growth failure and pubertal abnormalities. These factors can impair growth by their effects on the growth hormone-insulin like growth factor axis and also directly at the level of the growth plate via alterations in chondrogenesis and local growth factor signaling. Recent studies on the impact of cytokines and glucocorticoid on the growth plate studies further advanced our understanding of growth failure in chronic disease and provided a biological rationale of growth promotion. Targeting cytokines using biologic therapy may lead to improvement of growth in some of these children but approximately one third continue to grow slowly. There is increasing evidence that the use of relatively high dose recombinant human growth hormone may lead to partial catch up growth in chronic inflammatory conditions, although long term follow-up data is currently limited. In this review, we comprehensively review the growth abnormalities in children with juvenile idiopathic arthritis, inflammatory bowel disease and cystic fibrosis, systemic abnormalities of the growth hormone-insulin like growth factor axis and growth plate perturbations. We also systematically reviewed all the current published studies of recombinant human growth hormone in these conditions and discuss the role of recombinant human insulin like growth factor-1
    corecore